

Druckcomputer DC 2000PRO

Inhalt

1.	Spezifikation2
2.	Bedienelemente4
3.	Menü Messart7
3.1	Druckmessung7
3.2	Strömungsgeschwindig-
	keit8
3.3	Temperaturmessung9
3.4	Feuchtemessung10
3.5	Alternierende Anzeige 11
4.	Menü Belastungsprüfung
	(TRGI) 11
5.	Menü Dichtheitsprüfung
	(TRGI) 13
6.	Menü Leckratenmessung 14
7.	Menü Min-, Max-,
	Mittelwert19
8.	Menü Setup20
8.1	Grundeinstellungen20
8.2	Logo-Eingabe23
9.	Menü Logger/Datenüber- tragung26
10.	Batteriewechsel28
11.	Zubehör28
12.	Konformitätserklärung29
13.	Garantie und Service31
14.	Kurzanleitung
	Einlegeblatt mittig

1. Spezifikation

Der Wöhler Druckcomputer DC 2000^{PRO} ist ein hochpräzises, multifunktionales Vielfachmessgerät zur Differenzdruck-, Strömungsgeschwindigkeit-, Temperatur- und Feuchteregistrierung. Der extrem große Dynamikbereich des Gerätes erlaubt neben hochempfindlichen Messungen kleinster Drücke im Pascal-Bereich für Zug- und Gasdruckmessungen auch Leckmengenbestimmung und Dichtheits- sowie Belastungsprüfungen nach DVGW-TRGI. Ein maximaler Messbereich bis zu 2 Bar und ein Berstdruck von 3 Bar garantieren auch für höhere Druckbereiche genügende Sicherheit. Bei allen Messungen wird der Benutzer durch Textanweisungen auf dem Display geführt.

Alle Messwerte lassen sich in einem Logger speichern. Daher lässt sich der DC 2000^{PRO} auch für (Raum-)Klimamessungen verwenden. Dazu sind neben dem Drucksensor auch serienmäßig ein Temperatursensor und ein Raumfeuchtesensor integriert. Optional lässt sich der Anwendungsbereich mit einem externen Temperatursensor erweitern. Alle Messwerte lassen sich, je nach gewählter Abtastrate, bis zu mehreren Jahren "loggen" und über die integrierte IrDA-Schnittstelle zum PC übertragen. Messprotokolle können zusammen mit einem firmeneigenen "LOGO" direkt auf einem Thermodrucker ausgegeben werden. Im Setupmenü kann bei Bedarf eine kontinuierliche IrDA Datenübertragung eingeschaltet werden, so dass während des Messvorgangs sekündlich alle vier Messwerte (Druck, Temperatur, extern und intern, rel. Feuchte) mit entsprechenden Kanalnummern zum PC übertragen werden.

Die extrem niedrige Stromaufnahme wird durch eine völlig neue Prozessortechnologie ermöglicht, bei der sich die Stromaufnahme automatisch an die Messaufgabe dynamisch anpasst. Auch in der Betriebsart mit maximaler Stromaufnahme (6 mA) ergibt sich mit zwei Standardbatterien (2 x Mignon, 2 Ah) eine kontinuierliche Betriebsdauer von mehr als 300 h. In der Logger-Betriebsart erhöht sie sich bei einem gewählten Abtastabstand von 4 h zwischen zwei Messungen auf mehrere Jahre (4680 Messungen x 4 h) ohne Batteriewechsel bzw. Speicherüberlauf. Das Druckmessgerät lässt sich sowohl für gasförmige Medien (Luft- bzw. inertes Gas) als auch für Flüssigkeiten wie Wasser oder Heizöl verwenden. **Dabei ist zu beachten, dass Flüssigkeitsreste in den Druckanschlüssen bei nachfolgenden Gasmessungen das Messergebnis verfälschen können. Deshalb sollte das Gerät nicht mehr für gasförmige Medien verwendet werden, nachdem eine Flüssigkeitsmessung durchgeführt wurde. Das Rechenwerk des Prozessors ermöglicht die einfache Verarbeitung der Messwerte, so dass zum Beispiel automatisch die Leckrate in I/h oder die mit einem Prandtl-Rohr gemessene Strömungsgeschwindigkeit in m/s angezeigt wird.**

Das Wöhler DC 2000^{PRO} ist vom TÜV SÜD Industrie Service zur Gasleckmengenmessung entsprechend den neuen DVGW-Anforderungen der VP 952 für Niederdruck-Gasleitungen nach DVGW-Arbeitsblättern G600 und G624 zertifiziert und DVGW zugelassen. (DVGW-Baumusterprüfzertifikat DG-4805BQ0012).

1.1 Messwerte

Differenzdruckmessung (temperaturkompensierte Piezo-Brücke) Messbereich: +/- 2 bar 1 Pa Auflösung im Bereich –125,00 hPa bis +125,00 hPa, sonst 10 Pa Genauigkeit: < 3 % v. M., im Bereich < +/- 200 Pa besser als +/- 6 Pa

Interne Temperaturmessung (NTC)

Messbereich: -20 °C bis 60 °C Genauigkeit: < +/- 2°C Auflösung: 0,1°C

Externe Temperaturmessung (optional, Lufttemperaturfühler Best.-Nr. 9605 oder Lufttemperatursonde Best.-Nr. 9611) Messbereich: -19,9 ℃ bis +99,9 ℃ Genauigkeit: < +/- 2 ℃ Auflösung: 0,1 ℃ T98: < 120 sec, bei 1,5 m/s

Feuchtemessung

Messbereich: 0 % bis 100 % rF (relative Feuchte), nicht kondensierend Genauigkeit: < +/- 2 % rF, im Bereich 0 bis 90 % rF, sonst < 3 % rF Auflösung: 1 % rF

1.2 Errechnete Werte

Druckeinheiten: Umrechnung in **mbar**, **hPa**, **Pa**, **mmH**₂**O**, **PSI** entsprechend allgemein gültiger Umrechnungsvorschrift.

Temperatureinheiten: Umrechnung von °C in °F entsprechend allgemein gültiger Umrechnungsvorschrift.

Strömungsgeschwindigkeiten: nach Prandtl, Anzeige in m/s, automatische kontinuierliche Dichtekorrektur durch Temperatursignal Bereich: 2 bis 150 m/s

Rohrleitungsvolumen automatisch von 0,0 bis 1000,0 l (geprüft bis 250,0 l)

Leckrate (**0,0 bis 300,0 l/h)**: nach DVGW-TRGI Arbeitsblatt G624 in l/h. Die zur Umrechnung unterschiedlicher Gasarten notwendigen Stoffdaten können aus einer im Gerät abgelegten Datenbank ausgewählt werden.

Druckabfall: Belastungs- und Dichtheitsprüfung nach DVGW-TRGI, Arbeitsblatt G600

Statistische Kennwerte: Minimum, Mittelwert, Maximum aller Mess- und Rechenwerte in der jeweiligen Maßeinheit.

Datum und Uhrzeit: Ausgabe auf Messprotokollen

1.3 Loggerfunktion

Umfang: 4680 Messungen mit jeweils Druck- und Feuchtemesswert und zwei Temperaturmesswerten (bei eingestecktem externen Fühler), d.h. maximal 18.720 Messwerte.

Messwerte werden auch ohne Batterien **mehr als 10 Jahre im Speicher** gehalten.

IrDA-Datenübertragung schon während der Registrierung (permanent alle 4 Sek)

wählbare Abtastintervalle: 30 s, 1 Min, 3 Min, 10 Min, 30 Min, 1h, 3h, 4h Auf volle Batterien achten.

1.4 Technische Daten

Stromaufnahme aus zwei Mignonzellen, Typ AA oder Trockenbatterien: -Arbeitsmode: ca. 6 mA, -"Off"-Mode und Loggerbetrieb: ca. 16 μ A für Uhr und Prozessor **Schnittstellen**: -Infrarotdatentransfer zum PC -Druckerausgabe vor Ort auf Thermodrucker Best.-Nr. 9130 **Lagertemperatur**: -20 °C bis +60 °C **Arbeitstemperatur**: -5 °C bis +60 °C im Loggerbetrieb (ohne Displayanzeige), mit Displayausgabe 0 °C - 50 °C **Masse**: ca. 450 g mit Schutztasche und Haftmagnet ohne Schlauch **Abmessung**: 54 x 165 x 52 mm

2. Bedienelemente und Anschlüsse

Das folgende Bild 2.1 zeigt die Anzeige- und Bedienelemente des DC 2000^{PRO}. Das Display weist links immer eine Trendanzeige ▲▼, in der Mitte den Zahlenwert und rechts die zugehörige Maßeinheit auf. Bei einem Tastendruck wird zusätzlich ein Cursor ▲ am Displayrand angezeigt, der auf ein Unterprogramm am Displayaufkleber weist. Blinkt dieser Cursor, so ist dieser Menüpunkt aktiviert.

Die Tastenfunktion ist ähnlich wie bei einem Handy aufgebaut. Generell lässt sich mit der linken "±" **Taste** eine Zahleneingabe erhöhen oder verringern bzw. die Cursorposition \blacktriangle (1) am Displayrand nach rechts oder nach links verschieben. Ein kurzer Doppelklick auf die "±"Taste ändert die Zählrichtung von Auf- zu Abwärtszählungen bzw. schaltet die Cursorschrittrichtung von rechts nach links. Ein Punkt in der Mitte des Displays (2) zeigt diese Umkehrfunktion an. Ein weiterer Doppelklick schaltet wieder auf positive Zähl- bzw. Cursorschrittrichtung.

<u>Beispiel:</u> Ein Druck auf die " \pm "**Taste** versetzt den Cursor von der gezeigten Position "Belastungsprüfung" (siehe 1) nach rechts auf die "Dichtheitsprüfung". Man gelangt

zur Position "Belastungsprüfung" zurück, indem man erst einen Doppelklick (siehe 2: "•" zeigt aktive Umkehrfunktion) und anschließend einen Einzelklick ausführt.

Bild 2.1: Display und Bedienelemente DC 2000PRO

Die **"ENTER"-Taste** in der Mitte des Bedienfeldes bestätigt die Zahleneingabe bzw. aktiviert das Programm der gewählten Cursorposition.

Die rechte **"C I/O"-Taste** hat zwei Funktionen. Bei einmaligem Betätigen bricht sie einen irrtümlich begonnenen Menüpunkt bzw. eine falsche Zahleneingabe ab. Wird die Taste gedrückt gehalten, so schaltet sich das Gerät nach 3 Sekunden aus.

Das Bild 2.2 zeigt alle Komponenten und Verbindungen des Druckcomputers DC 2000^{PRO}.

Bild 2.2: Verbindungen und Anschlüsse des Druckcomputers DC 2000PRO

Auf die Anschlussstutzen kann ein Schlauch mit einem Innendurchmesser von 5 - 6 mm oder eine Schnellkupplung Typ DN 2.7 aufgesteckt werden. Bei höheren Druckbereichen sollten keine Silikonschläuche verwendet werden, da sich bei diesem Material bereits bei einem Überdruck ab 1 Bar eine Perforation in Form einer zusätzlichen Leckage bemerkbar machen kann.

Auf der Rückseite des DC 2000^{PRO} in Bild 2.2 befinden sich Diffusionsöffnungen zur internen Registrierung der **Raumfeuchte** und **Temperatur**. Die integrierte Temperaturmessung dient auch zur Temperaturkompensation des Drucksensors. Als Präzisionstemperatursensor mit erweitertem Messbereich (-19,9 °C bis +99,9 °C) können extern der Verbrennungslufttemperaturfühler A 500 (Best.-Nr. 9605) oder die Verbrennungsluftsonde A 500 (Best.-Nr. 9611) mit 1,6 m Kabel verwendet werden.

Zum Auslesen des Loggers werden die Messdaten infrarot-optisch über die IR-Schnittstelle (Best.-Nr. 9631 seriell oder 9318 USB oder Bluelink 500) zum PC übertragen.

3. Das Menü Messart

Bild 3.1 : Auswahl des Menüs Messart

Vor jedem Gebrauch muss zunächst visuell der ordnungsgemäße Funktionszustand des Gerätes geprüft werden. Nach dem anschließenden Einschalten führt das Gerät einen Selbsttest durch. Danach werden Uhrzeit und Datum ausgegeben. War die Log-gerfunktion des Gerätes aktiviert, so erscheint anstelle des Selbsttestes der Text "Log" gefolgt von aktuellen Mess- und Speicherwerten, bevor sich das Gerät dann wieder abschaltet. Solange ein **blinkender Cursor** auf das Unterprogramm **P=0** zeigt, darf kein Schlauch angeschlossen bzw. kein Differenzdruck aufgegeben werden, da das **Gerät sich stabilisiert und seinen Nullpunkt ermittelt**.

Die Unterabschnitte in diesem Kapitel beschreiben die Grundfunktionen im Menüpunkt **Messart**. Dazu ist der Cursor durch Betätigen der "±"Taste auf das Unterprogramm **Messart** zu versetzen und mit der "ENTER" Taste zu aktivieren (Cursor blinkt unter Messart), (siehe Bild 3.1).

3.1 Druckmessung

Das Unterprogramm **Messart** wird mit der "ENTER"-Taste aktiviert. Anschließend blinkt der Cursor und auf dem Display erscheint der Text "DRUCK" zusammen mit der Maßeinheit "mbar". Nun kann mit der "±"-Taste zu allen verfügbaren Einheiten durchgeschaltet werden, die mit der "ENTER"-Taste zu bestätigen sind. Es lassen sich so die folgenden fünf Druckmaßeinheiten auswählen: **Pa, hPa, mbar, mmH2O, PSI**.

3.1.1 Schnelldruckmessung (Reglerprüfung)

In der Maßeinheit hPa ist unter der Bezeichnung "Schnelldruck" zusätzlich eine Druckmessung mit verzögerungsfreier Anzeige implementiert. Dieser Modus ist besonders für Gasreglerprüfungen geeignet. Mit der "±"-Taste kann der Messvorgang unterbrochen werden und das Gerät zeigt den letzten Druckmesswert an. Dieser Zustand wird durch die Trendanzeige ▲▼ symbolisiert. Durch nochmaliges Drücken der "±"-Taste kann die Messung fortgesetzt werden. Das Gerät kehrt zum normalen (batteriesparenden) Messmodus in der zuletzt gewählten Einheit zurück. Mit der **Messart AUTO** erfolgt eine alternierende Anzeige von Druck-, Temperatur- und Luftfeuchtewerten in den zuletzt gewählten Einheiten für Druck und Temperatur.

Ein Überdruck an dem mit einem (+) Zeichen markierten Anschlussstutzen sowie ein Unterdruck an dem mit einem (-) Zeichen gekennzeichneten Anschlussstutzen führt zu einer positiven Differenzdruckanzeige. Übersteigt die Druckdifferenz 125,00 hPa, so schaltet das Gerät automatisch auf den höheren Messbereich bis 2000,0 hPa um. Werden aus diesem hohen Druckbereich wieder 125,00 hPa unterschritten, so schaltet die Anzeige wieder auf eine Auflösung von 1 Pa um.

3.2 Strömungsgeschwindigkeitsmessung nach Prandtl

Mit Hilfe eines Prandtl'schen Staurohres kann die Strömungsgeschwindigkeit der Luft in m/s gemessen werden. Zur Aktivierung der Messung wird im Menü **Messart** so oft die "±"-Taste gedrückt, bis der Text "Prandtl" mit der Maßeinheit "m/s" angezeigt wird. Der Gesamtdruck des Staurohres wird an den (+) Überdruckstutzen und der statische Druck an den (-) Unterdruckstutzen des DC 2000 angeschlossen (siehe Bild 3.2). Zunächst muss im ruhenden Medium das Gerät "genult" werden (P = 0). Anschlie-Bend führt man die Sonde möglichst parallel und mit der Spitze in Gegenrichtung in die Gas- oder Luftströmung ein und liest die Messwerte ab. Die aktuelle Strömungsgeschwindigkeit v wird nach GI. (1) automatisch berechnet. Die Luftdichte ρ in GI. (1) hängt wiederum nach GI. (2) von dem absoluten Luftdruck p_{akt} und der aktuellen Temperatur T ab.

$$v = \sqrt{\frac{2 \times \Delta p}{\rho}}$$
(1)

mit:
$$\rho = 1,2 \cdot \text{kg/m}^3 \cdot \frac{293 \text{ K} \cdot \text{p}_{akt} (\text{hPa})}{(\text{T}(^{\circ}\text{C}) + 273 \text{ K}) \cdot 1013 \text{ hPa}}$$
 (2)

ν	Strömungsgeschwindigkeit in m/s
Δp	Druckdifferenz in Pa, mit Prandtlrohr gemessen
ρ	Luftdichte in kg/m ³
p_{akt}	absoluter Luftdruck in hPa, manuelle Eingabe in Menüpunkt Setup
- akt	(Bezugswert 1013 hPa)
Т	Lufttemperatur in $^{\circ}$ C

lm Menüpunkt **Setup** -> **Absolutdruck** kann der absolute Luftdruck p_{akt} eingestellt werden. Diese Einstellung wird auch bei der Leckratenbestimmung in Kapitel 6 verwendet.

Bild 3.2: Prandtlrohr Best.-Nr. 9487 mit Verbrennungslufttemperatursonde A500 Best.-Nr. 9611 zur automatischen Dichtekorrektur

Weicht die Temperatur T des zu messenden Luftstroms von der Raumtemperatur des DC 2000^{PRO} ab, so kann parallel zum Prandtlrohr die Verbrennungslufttemperatursonde über die 2 m Kabelverbindung in die Strömung eingebracht werden. Auf diese Art erfolgt eine automatische Nachführung der Luftdichte ρ in Abhängigkeit von der gemessenen Temperatur T nach GI. (2).

3.3 Temperaturmessung

Zur Aktivierung der Temperaturmessung wird im Menü **Messart** so oft die "±"-Taste gedrückt, bis der Text "Temperatur" mit der Maßeinheit "°C" angezeigt wird. Ein weiteres Drücken der "±"-Taste schaltet auf die Maßeinheit "°F" um. Die "ENTER"-Taste bestätigt die ausgewählte Messart und schaltet zur Anzeige zurück.

Es kann jederzeit ein externer Temperaturfühler angeschlossen werden. Das Gerät schaltet in diesem Fall automatisch auf den externen Sensor um.

Für Präzisionsmessungen sollte unter dem Menüpunkt Setup, TLOff die fünfstellige

Kalibriernummer (z.B. Kal.-Nr: 10208) des Sensors eingegeben sein. Diese Kalibriernummer findet sich bei jedem Temperatursensor auf einer Metallfolie aufgedruckt. Wird kein externer Fühler angeschlossen, so wird die Temperatur eines internen Sensors angezeigt, der auch zur Temperaturkompensation des Druck- und des Feuchtesensorsignales dient. Bei Dauermessungen von Raumtemperatur und Feuchte sollte daher das Gehäuse keiner direkten Sonnen- oder Wärmebestrahlung ausgesetzt werden.

3.4 Feuchtemessung

Zur Aktivierung der Feuchtemessung wird im Menü Messart so oft die "±"-Taste gedrückt, bis der Text "Feuchte" mit der Maßeinheit "%" angezeigt wird. Die "ENTER"-Taste bestätigt die ausgewählte Messart und schaltet zur Anzeige zurück. Die Diffusionsöffnung auf der Rückseite des Gehäuses sollte nicht abgedeckt sein. Der Feuchtesensor ist ein lasergetrimmtes, kapazitives Sensorelement mit chipintegrierter Signalaufbereitung. Er kann vom Anwender selbst ausgetauscht werden (Best.-Nr.: 7203). Dazu sind die beiden Kalibrierwerte im Menü Setup unter Zero offset (hier 0,833V, Bild 3.4) bzw. Setup unter Slope (hier 31,31 mV) einzugeben.

Bild 3.3: Position des Feuchtesensors nach Abnahme des Batteriedeckels

Der dem beiliegenden Kalibrierprotokoll entnommene Slope-Wert ist auf zwei Stellen hinter dem Komma zu runden (hier: 31,311 mV -> 31,31).

Model: IH-3610-1 Wafer: thunder2	Channel: 81 MRP: thunder2	File:	01072306
HYCAL Sensing Products Honeywell Opto. 840 Hawkins Blvd. Suite A-3 El Paso TX 79915 Calculated values at 5V: Vout @0%=0.833 @75.3%=3.190	Linear output for 2% RH Zero offset = 0.833 V Slope = 31.311 mV / %RH RH = (Vout - 0.833) / 0 Ratiometric response fc Vout = Vsupply * (0.166	accy 1 .0313 or 0 to 5 to	@25C: c 100%RH: 0.7927)

Bild 3.4: Kalibrierprotokoll eines Feuchtesensors

3.5 Automatisch alternierende Anzeige

Mit dem Programmpunkt **Messart**, **Auto** erfolgt eine alternierende Anzeige von Druck-, Temperatur- und Luftfeuchtewerten in den zuletzt gewählten Einheiten für Druck und Temperatur.

4. Menü Belastungsprüfung (DVGW-TRGI)

Die Belastungsprüfung nach DVGW – TRGI Arbeitsblatt G 600 bei Leitungen mit Betriebsdrücken bis 100 hPa kann sehr einfach mit dem DC 2000^{PRO} durchgeführt und dokumentiert werden.

Zunächst ist die Leitung zu verschließen und ein geeigneter Prüfstopfen einzuset-

Bild 4.1

zen. (Bitte beachten Sie die Unfallverhütungsvorschrift "UVV BGF D2"). Bevor das DC 2000^{PRO} mit dem Prüfstopfen verbunden wird, ist es einzuschalten. Nach der Nullung wird mit der "±"-Taste der Menüpunkt **Belastungsprüfung** aktiviert. Der DC 2000^{PRO} fordert zum Aufpumpen bis zum Prüfdruck auf (z.B. 1 bar (1.000 hPa)).

Ist irrtümlich der Überdruck – mit dem Unterdruckanschluss vertauscht worden, so erscheint auf dem Display der Text "tauschen". Erreicht der Druck den voreingestellten Prüfdruck, so startet die Stabilisierungsphase (Voreinstellung: Stab Dauer = 2 Minuten). Diese wird durch die Trendanzeige ▲▼ symbolisiert. Bleibt der Druck während dieser Stabilisierungsphase im Toleranzband von +/-10 % um den Prüfdruck, so startet nach Ablauf der Stabilisierungsdauer die eigentliche Druckverlustprüfung (Voreinstellung: Dauer = 10 Minuten). Während der Stabilisierungsphase kann die Druckverlustprüfung auch manuell mit der "ENTER"-Taste gestartet werden. Abwechselnd werden verbleibende Prüfdauer und aktuelle Druckwerte angezeigt. Nach Ablauf der Prüfdauer oder nach Abbruch mit der "C I/O"-Taste erfolgt auf dem Display bei blinkendem Cursor auf **Belastungsprüfung** die Ergebnisausgabe, die mit der "±"-Taste wiederkehrend durchgeschaut werden kann:

```
Differenz: 54,4 hPa

"±"-Taste

Startdruck: 1000,3 hPa

"±"-Taste

Dauer: 10:00

"±"-Taste

Stoppdruck: 945,9 hPa

"±"-Taste

Lauftext: "Drucken,.." mit der "ENTER"-Taste Druckerausgabe aktivieren

"±"-Taste

Differenz: 54,4 hPa

u.s.w.
```

Dieses Ergebnis kann auch nachträglich noch unter dem Menüpunkt **Log./IR** und **Drucken** ausgedruckt oder zum PC übertragen werden. Der Ausdruck enthält standardmäßig eine Grafik des Druckverlaufs. Ist dieses nicht gewünscht, kann der Grafikausdruck im Setupmenü unter Punkt Grafik deaktiviert werden.

Erst das Starten des Loggers oder einer weiteren Prüfung nach TRGI löscht das Protokoll.

5. Menü Dichtheitsprüfung (DVGW-TRGI)

Die Dichtheitsprüfung nach DVGW – TRGI Arbeitsblatt G 600 bei Leitungen mit Betriebsdrücken bis 100 hPa kann ebenfalls sehr einfach mit dem DC 2000^{PRO} durchgeführt und dokumentiert werden.

Zunächst ist die Leitung zu verschließen und ein geeigneter Prüfstopfen einzuset-

Bild 5.1

zen. (Bitte beachten Sie die Unfallverhütungsvorschrift "UVV BGF D2".) Bevor der DC 2000^{PRO} mit dem Prüfstopfen verbunden wird, ist einzuschalten. Nach der Nullung wird mit der "±"-Taste der Menüpunkt **Dichtheitsprüfung** aktiviert.

Der DC 2000^{PRO} fordert zum Aufpumpen bis zum Prüfdruck auf (z.B. 150 hPa). Ist irrtümlich der Überdruck– mit dem Unterdruckanschluss vertauscht worden, so erscheint auf dem Display der Text "tauschen". Erreicht der Druck den voreingestellten Prüfdruck, so startet die Stabilisierungsphase (Voreinstellung: Stab Dauer = 2 Minuten). Diese wird durch die Trendanzeige ▲▼ symbolisiert. Bleibt der Druck während dieser Stabilisierungsphase im Toleranzband von +/-10% um den Prüfdruck, so startet nach deren Ablauf automatisch die eigentliche Druckverlustprüfung (Voreinstellung: Dauer = 10 Minuten). Während der Stabilisierungsphase kann die Druckverlustprüfung auch manuell mit der "ENTER"-Taste gestartet werden. Abwechselnd werden verbleibende Prüfdauer und aktuelle Druckwerte angezeigt.

Nach Ablauf der Prüfdauer oder nach Abbruch mit der "C I/O"-Taste erfolgt auf dem Display bei blinkendem Cursor auf **Dichtheitsprüfung** die Ergebnisausgabe, die mit der "±"Taste wiederkehrend durchgeschaut werden kann:

```
Differenz: 17,7 hPa

"±"Taste

Startdruck: 110,83 hPa

"±"Taste

Dauer: 10:00 (Minuten)

"±"Taste

Stoppdruck: 93,14 hPa

"±"Taste

Lauftext: "Drucken..." mit der "ENTER"Taste Druckerausgabe aktivieren

"±"Taste

Differenz: 17,7 hPa

u.s.w.
```

Dieses Ergebnis wird im DC 2000^{PRO} abgespeichert und kann auch nachträglich noch unter dem Menüpunkt **Log./IR** und **Drucken** ausgedruckt oder zum PC übertragen werden. Erst das Starten des Loggers oder einer weiteren Prüfung nach TRGI löscht das Protokoll.

6. Leckraten- bzw. Gebrauchsfähigkeitsmessung nach dem DVGW-Arbeitsblatt G 624

Die Leckratenbestimmung nach dem DVGW - Arbeitsblatt G 624 kann sehr einfach mit dem DC 2000^{PRO} durchgeführt und dokumentiert werden.

Zunächst ist die Leitung zu verschließen und ein geeigneter Prüfstopfen einzusetzen. (Bitte beachten Sie die Unfallverhütungsvorschrift "UVV BGF D2".) Bevor das DC 2000^{PRO} nun mit dem Prüfstopfen verbunden wird, ist es einzuschalten und zu "nullen". Nach der automatischen Nullung wird mit der "±"Taste der Menüpunkt **Gebrauchsf./Leckrate** aktiviert. Das Display zeigt den Lauftext "Rohrvolumen" an Dieses Rohrvolumen kann nun automatisch oder grafisch ermittelt werden.

6.1 Automatische Bestimmung der Rohrleitungsvolumen

Wird bei Lauftext "Rohrvolumen" die "Enter"-Taste gedrückt, so kann das Rohrvolumen automatisch mit dem DC 2000^{PRO} ermittelt werden. Bei einem Leitungsvolumen bis zu 100 I wird dazu nach Bild 6.2 links mit einer Spritze ein Probevolumen von 100 ml entnommen. Leitungen mit mehr als 100 I Inhalt können mit einer Handrußpumpe (163 ml/Hub) geprüft werden, siehe Bild 6.2 rechts. Das jeweilige Probevolumen muss am DC 2000^{PRO} mit der "±"Taste eingegeben und mit der "ENTER"-Taste bestätigt werden. Nach einer erneuten Nullung zeigt das DC 2000^{PRO} dann den Lauftext "Pumpen" an. Nun kann die eigentliche Probenahme mit der medizinischen Spritze oder der Handrußpumpe bis zum eingestellten Probevolumen erfolgen. Das DC 2000^{PRO} zeigt dann automatisch das nach Gleichung 3 ermittelte Rohrleitungsvolumen an. Sobald die

Anzeige stabil ist, bestätigt man diesen Wert mit der "ENTER"-Taste. Er wird dann für die weitere Leckratenbestimmung nach G 624 als $V_{_{Rohr}}$ verwendet.

Messprinzip:

Wird aus einem Leitungssystem ein bekanntes Probenvolumen V_{Probe} (z.B. mit einer medizinischen Spritze oder einer Rußpumpe) entnommen, so lässt sich aus der daraus resultierenden Druckänderung das Gesamtvolumen V_{Robr} bestimmen.

Bei kleinen Rohrvolumen reicht eine medizinische Spritze, bei größeren Rohrvolumen kann die Handrußpumpe verwendet werden. Die Auswahl sollte so erfolgen, dass die Druckänderung mindestens 5 hPa ergibt. Aus dem Boyle-Mariottschen Gesetz lässt sich folgende Gleichung für das gesuchte Volumen V_{Bohr}herleiten:

$$V_{\text{Rohr}} = V_{\text{Probe}} \quad \left(\frac{p_{\text{akt}}}{\Delta p} - 1 \right)_{\text{Temp=const.}}$$
(3)

mit:

Bild 6.2: Anschlussbild zur Bestimmung des Leitungsvolumens V_{Rohr} links mit medizinischer 100 ml Spritze, rechts mit Handrußpumpe

6.1.1 Wahl des Spritzenvolumens

Gemessen wird die Druckdifferenz Δp . Um ein ausreichend genaues Messergebnis zu erhalten, sollte die gemessene Druckdifferenz Δp mindestens 200 Pa betragen. Daraus ergibt sich, dass das Spritzenvolumen V_{Probe} mindestens 1/500 des Leitungsvolumens betragen sollte. In diesem Fall ist der zu erwartende Fehler bei der Volumenmessung gleich groß wie die Messungenauigkeit des DC 2000^{PRO}, nämlich 3 % vom Messwert. Ein höherer Druck führt zu längeren Stabilisierungszeiten beim Temperaturausgleich und zu einem größeren Einfluss eventueller Lecks.

Die folgende Tabelle gibt Richtwerte für die Auswahl des Spritzenvolumens an:

Spritzenvolumen	Max. Leitungsvolumen (DC 2000PRO)
20 ml	10 I
50 ml	25 I
100 ml	50 I
163 ml (1 Hub mit Rußtestpumpe)	80 I
489 ml (3 Hübe mit Rußtestpumpe)	240 I

Im Gesamtausdruck dieser Leckratenbestimmung sind alle Zwischenergebnisse der Volumenbestimmung angegeben und damit auch im Nachhinein dokumentiert. Ein Vorteil dieses Verfahrens liegt in der Unempfindlichkeit gegenüber eventuellen Leitungslecks, da durch die geringe Probevolumenentnahme nur Druckdifferenzen von wenigen hPa in der Leitung notwendig sind. Im Vergleich zu einem üblichen Prüfdruck von 100 hPa macht sich ein Leck bei diesen geringen Testdrücken kaum bemerkbar.

6.2. Grafische Bestimmung des Rohrleitungsvolumens

Wird bei der Lauftextanzeige "Rohrvolumen" die "C I/O"-Taste gedrückt, so kann anschließend das Leitungsvolumen aus Rohrlängen und Durchmesser in Bild 6.3 ermittelt und mit der "±"-Taste eingegeben werden. Bestätigt man diese Eingabe mit der "ENTER"-Taste, so wird sie für die weitere Leckratenbestimmung nach G 624 als V_{Bobr} verwendet.

Hilfsdiagramm zur Rohrvolumenbestimmung

Bild 6.3 : Hilfsdiagramm zur Ermittlung des Rohrinhaltes

Beispiel: Ein sog. ¹/₂" Rohr der Ausführung "mittelschwere Gewinde nach DIN 2440" von 10 m Lange besitzt ein Leitungsvolumen von 2 l.

6.3 Bestimmung der Leckrate

Nach der Messung oder der Eingabe des Rohrleitungsvolumens fordert der DC 2000^{PRO} zum Eingeben des Prüfdrucks, der Prüfdauer und des Betriebsdrucks der Gasleitung auf. Danach ist die Leitung bis zum Prüfdruck aufzupumpen (z.B. 100 hPa). Dazu muss nun die Spritze bzw. Handrußpumpe gegen die Druckluftpumpe zum Aufbau des Prüfdrucks ausgetauscht werden. Ist irrtümlich der Überdruck – mit dem Unterdruckanschluss vertauscht worden, so erscheint auf dem Display der Text "tauschen". Erreicht der Druck den voreingestellten Prüfdruck, so startet die Stabilisierungsphase (Voreinstellung: Stab Dauer = 2 Minuten). Diese wird durch die Trendanzeige \blacktriangle symbolisiert. Bleibt der Druck während dieser Stabilisierungsphase im Toleranzband von ± 10 % um den Prüfdruck, so startet nach deren Ablauf automatisch die eigentliche Druckverlustprüfung (Voreinstellung: Dauer = 5 Minuten). Während der Stabilisierungsphase, z.B. bei Druckabfall > 5 hPa, kann die Druckverlustprüfung auch manuell mit der "ENTER"-Taste gestartet werden. Abwechselnd werden verbleibende Prüfdauer und aktuelle Druckwerte angezeigt.

Nach Ablauf der Prüfdauer oder nach Abbruch mit der "C I/O"-Taste, z.B. bei Druckabfall > 15 hPa, erfolgt auf dem Display bei blinkendem Cursor auf **Gebrauchsf./ Leckrate** die Ergebnisausgabe, die mit der "±"Taste wiederkehrend durchgeschaut werden kann:

Differenz: 9,9 hPa "±"Taste Startdruck: 108,83 hPa "±"Taste Dauer: 1 min "±"Taste Stoppdruck: 98,96 hPa "±"Taste Leckrate: 8,3 I/h hPa "±"Taste Lauftext: "Drucken,.." mit der "ENTER"Taste Druckerausgabe aktivieren "±"Taste Differenz: 9,9 hPa u.s.w.

Die Berechnung der Leckrate erfolgt automatisch nach folgenden Gleichungen (4) u. (5) und entspricht damit der Vorgehensweise des DVGW-TRGI Arbeitsblattes G 624:

7. Menü Min-, Max- und AVG -Werte

Die linken drei Cursorpositionen am unteren Displayrand geben statistische Kennwerte aller Mess- und Rechenwerte an. Die Detektion des jeweiligen Minimums und Maximums bzw. die Berechnung des Mittelwertes (AVG) kann mit der P=0-Funktion zurückgesetzt werden. Bei der Mittelwertberechnung kann der Wirkungsgrad der Glättung mit dem Wert ALPHA nach Gl. (6) eingestellt werden. Je kleiner ALPHA, desto größer die Glättungswirkung. ALPHA lässt sich mit dem Menüpunkt Setup -> ALPHA von 0,01 bis 0,99 einstellen.

Bild 7.1

$AVG_{neu} =$	ALPHA • aktueller Messwert +(1- ALPHA) • AVG alt	(6)
AVG _{neu}	Mittelwert zum aktuellen Zeitpunkt	
	Cowiebtsfekter für ektuellen Messwort (0.01, 0.00)	
ALFNA	Gewichtstaktor für aktuellen messwert (0,010,33)	

8. Setupmenü für Grundeinstellungen und Logo-Eingabe

Das Setupmenü dient zur Einstellung der Grundkonfiguration. Alle Einstellungen bleiben auch nach dem Ausschalten oder einem Batteriewechsel erhalten.

8.1 Grundeinstellungen

Nach Auswahl des Setupmenüs lassen sich mit der "±"-Taste eine Reihe von Einstellungen vornehmen, die im Folgenden erläutert werden. Eine gute Übersicht gibt auch die Kurzanleitung auf dem Einlegeblatt.

Bild 8.1

1. Setup -> Runden

Bei eingeschalteter Rundungsfunktion wird die letzte Stelle im Display auf eine Auflösung von 5 Digit umgeschaltet. Bei einer Pascal-Anzeige führt dies beispielsweise anstelle der 1 Pa-Auflösung zu einer reduzierten Auflösung von 5 Pa. Dies bewirkt bei Druckschwankungen eine deutlich ruhigere Anzeige, jedoch ohne die bei einer Mittelung üblichen Verzögerungseffekte. Alle Rechenwerte werden intern weiter mit der hohen Auflösung ermittelt. (Ein/Aus, default: Aus)

2. Setup -> Medium

20

In diesem Menü kann die Gasart und damit die relative Zähigkeit in Gl. (4) ausgewählt werden (default: Erdgas)

Gasart	f
Erdgas	1,7
Luft	1,0
Stadtgas	1,3
Propan	2,3
Butan	2,4
Wasserstoff	2,0

Tabelle 1: relative Zähigkeit verschiedener Gase nach Gl. (4) nach DVGW-TRGI

3. Setup -> Luftdruck

Hier wird für GI. (2) zur Dichteberechnung und für GI. (5) zur Leckratenbestimmung der aktuelle Luftdruck p_{akt} am Ort (QFE) in hPa eingegeben. Es können Werte zwischen 800 hPa und 1200 hPa eingestellt werden. (default: 1013 hPa)

4. Setup -> Uhr

Hier werden die Uhrzeit und das Datum eingestellt. Vergehen bei einem Batteriewechsel zwischen Entnahme und Neubestückung weniger als eine Minute, so braucht die Uhr nicht nachgestellt zu werden. Vergeht mehr Zeit, so ist die Uhrzeit lediglich um diesen Betrag zu erhöhen.

5. Setup -> ALPHA

Hier wird der Gewichtsfaktor für die Mittelung AVG nach GI. (6) eingestellt. ALPHA kann Werte im Bereich von 0,01 bis 0,99 annehmen. Je geringer ALPHA gewählt wird, desto geringer machen sich aktuelle Schwankungen im Signal bemerkbar, siehe auch Kapitel 7. (0,01 - 0,99, default: 0,90)

6. Setup -> Belastungsprüfung->Druck

Hier wird der Prüfdruck der Belastungsprüfung eingestellt (500 hPa - 2000 hPa, default: 1Bar).

7. Setup -> Belastungsprüfung->Dauer

Hier wird die Dauer der Belastungsprüfung eingestellt (1 - 300 Min, default: 10 Minuten).

8. Setup -> Dichtheitsprüfung->Druck

Hier wird der Prüfdruck der Dichtheitsprüfung eingestellt (1 - 500 hPa, default: 150 hPa).

9. Setup -> Dichtheitsprüfung->Dauer

Hier wird die Dauer der Dichtheitsprüfung eingestellt (1 - 300 Min, default: 10 Min).

10. Setup -> stab. Dauer

Hier wird die Dauer zur thermischen Stabilisierung vor dem Start der Belastungs- oder Dichtheitsprüfung sowie der Leckratenbestimmung eingestellt. Bleibt der aktuelle Druckwert für diese Zeit innerhalb eines Toleranzbandes von +/- 10% um den Solldruck, so startet die Druckverlustmessung automatisch. Die Position innerhalb dieses Bandes und damit der Start der Stabilisierungsdauer wird im Display durch folgende Trendanzeige ▲▼ symbolisiert. Die Druckverlustmessung kann während der Stabilisierungsphase auch jederzeit durch Tastendruck manuell gestartet werden. (1 - 300 Min, default: 10 Min)

11. Setup -> Tloff

Hier wird die auf dem Aufkleber der externen Temperatursonde befindliche Kalibriernummer eingegeben. (10000-10300, default: 10179)

12. Setup -> Feuchte-> Zero offset

Hier wird der Kalibrierwert **Zero offset** des Feuchtesensors eingegeben. In Bild 3.4 in Kapitel 3.4 wird ein Beispiel für Zero offset = 0.833V dargestellt. (0.5 - 1.0 V, default: 0.780V)

13. Setup -> Feuchte -> Slope

Hier wird der Kalibrierwert **Slope** des Feuchtesensors eingegeben. In Bild 3.4 in Kapitel 3.4 ist ein Beispiel für Slope = 31,31 mV gezeigt. Es muss der aus dem Kalibrierblatt abgelesene Wert auf zwei Stellen nach dem Komma gerundet werden. (25,00 - 60,00 mV, default: 30,00 mV)

14. Setup -> Lograte

Hier wird die Dauer zwischen zwei Registrierungen des Loggers eingestellt. Die Voreinstellung beträgt 30 Sekunden. Das heißt, dass alle 30 Sekunden jeweils ein Druck-, zwei Temperatur- und ein Feuchtemesswert in den integrierten Datenspeicher geschrieben werden, siehe Kapitel 9.2. (default: 30 sec)

15. Setup -> AUTO-OFF

Hier kann die Auto-Off-Funktion aktiviert bzw. deaktiviert werden. Sie dient zur automatischen Abschaltung, falls länger als 30 Minuten keine Tastatureingabe erfolgte. (default: Ein)

16. Setup -> IrDA

Hier wird eine kontinuierliche IrDA-Datenübertragung eingeschaltet. Es werden dann während des normalen Messvorgangs sekündlich alle vier Messwerte (Druck, 2 x Temperatur, rel. Feuchte) mit entsprechenden Kanalnummern zum PC übertragen. (Default: Aus).

17. Setup-> Schnelldruck Ein/Aus

Die Voreinstellung im Schnelldruckermodus ist "Ein". Bei dieser Einstellung kann über den Wöhler TD 600 Thermoschnelldrucker ausgedruckt werden. Zum Ausdruck über den Wöhler TD 23 Thermodrucker wählen Sie die Einstellung "Aus".

18. Setup->Grafik Ein/Aus

Hier kann eingestellt werden, ob bei einer Belastungs-, Dichtheits- oder Gebrauchsfähigkeitsprüfung eine Grafik des Druckverlaufs ausgedruckt werden soll. Voreinstellung ist "ein".

19. Setup -> Logo

Hier kann der Logo-Text für die Druckerausgabe eingegeben werden, dies wird im folgenden Kapitel 8.2 erläutert. (default "WÖHLER MGKG, DC 2000")

20. Setup -> Default

Mit dieser Funktion wird der Setupzustand bei Auslieferung wieder hergestellt. Der Logo-Text wird mit dem Wöhler-Urlogo überschrieben. Alle Sensorkalibrierwerte bleiben unverändert. Ein unbeabsichtigtes Auslösen wird durch die zusätzliche Abfrage **sicher** verhindert.

8.2 Logoeingabe

Die folgenden Tabellen 2 u. 3 erleichtern die Logo-Eingabe am DC 2000^{PRO}. Zunächst füllt man (am Besten mit einem Bleistift) die obere Tabelle 3 mit dem gewünschten Text aus. Die ersten beiden Zeilen haben 12 Zeichen, die fett ausgedruckt werden. Die folgenden Zeilen 3 bis 6 können maximal 24 Zeichen enthalten, die dann normal ausgedruckt werden. Anschließend bestimmt man Zeile für Zeile und Spalte für Spalte den ASCII-Code und trägt ihn in die Code-Ergebnisfelder ein. Diese Werte lassen sich dann Zeile für Zeile unter Setup -> Logo eingeben und abspeichern. Der LOGO-Konverter befindet sich auch in der Excel-Software, die unter der Internetadresse <u>www.woehler.de/mgkg</u> als "Freeware" heruntergeladen werden kann. Dort erfolgt die Konvertierung des Textes in den ASCII-Code automatisch. Tabelle 2: Konvertierung am Beispiel des Urlogos "WÖHLER MGKG ..."

LOGO-Konverter

Texteingabefe	lder	AC	ITU	NG!!	Lee	re Ze	ellen	sin	d mi	t eir	ıem	Lee	rzeio	chen	zu	fülle	n	(Zei	chen	satz	: Aria	al 10)	
Zeile/Spalte		1	1	2		3	4	Ļ		5		5		7	1	3		9	1	0	1	1	1	2
Fett1	V	N	(Ö	H	ł			I	E		ł					_	N	(G 🗌	- H	<	(3
Fett2		_			1)	(2	2	2)	()	()								
Spalte	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Normal3	S	С	h	ü	t	z	е	n	s	t	r			3	8									
Normal4	3	3	1	8	1		В	а	d		W	ü	n	n	е	n	b	е	r	g				
Normal5	Т	е	1		100	0	2	- 9	- 5	3	1	- 7	3	0										
Normal6	F	а	х		100	0	2	- 9	- 5	3	1	- 7	3	8	8									
Code-Ergebni:	sfeld	er																						
Zeile/Spalte		1	1	2	:	3	4	۱.	5	5	- (5	Ĩ	7	1	3		9	1	0	1	1	1	2
Fett1	87		214		72		-76		-69		82		32		32		-77		-71		-75		71	
Fett2	32		32		68		67		-50		48		48		48		32		32		32		32	
Spalte	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Normal3	83	99	104	252	116	122	101	110	115	116	114	-46	32	-51	-56	32	32	32	32	32	-32	32	32	- 32
Normal4	-51	51	49	- 56	-49	32	-66	-97	100	32	87	252	110	110	101	110	- 98	101	114	103	-32	32	32	- 32
Normal5	-84	101	108	46	-58	-48	-50	-57	-53	-51	32	-55	-51	48	32	32	32	32	32	32	-32	32	32	- 32
Normal6	-70	97	120	46	-58	- 48	-50	57	-53	-51	32	- 55	-51	56	-56	32	32	32	32	32	32	32	32	- 32
Zeichen		ļ	"	#	\$	%	&	I.	()	*	+	,	-		1	0	1	2	3	4	5	6	7
Code	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	- 51	52	53	54	55
Zeichen	8	9	:	;	<	=	>	?	0	A	В	С	D	E	F	G	Н	Ι	J	К	L	Μ	Ν	0
Code	56	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
Zeichen	Ρ	Q	R	S	Т	U	V	W	Х	Y	Ζ	[1]	^		`	a	b	с	d	e	f	g
Code	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Zeichen	h	i	j	k	1	m	n	0	p	q	r	s	t	u	v	w	x	у	z	{		}	~	
Code	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127

Tabelle 3: Vorlagen für eigene Konvertierungen

Texteingabere	lder																							
Zeile/Spatte		1	í	2		3	4	1	**	5	6	3		7	8	}		9	1	0	1	1	1	2
Fett1																								
Fett2																								
Spalte	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Normal3																								
Normal4																								
Normal5																								
Normal6																								
Code-Ergebni:	sfelde	er																						
Zeile/Spatte		1	14	2		3	2	1		5	6	}		7	8	}	() ()	Э	1	0	1	1	1	2
Fett1																								
Fett2																								
Spalte	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Normal3																								
Normal4																								
Normal5																								
Normal6																								
Zeichen		ļ		Ħ	\$	%	8		í –	1	•	+		-		/	0	1	2	3	4	5	6	7
Code	32	- 33	- 34	- 35	36	- 37	- 38	39	40	· 41	42	43	44	45	46	47	48	49	- 50	- 51	- 52	ß	- 54	- 55
Zeichen	8	9	:		<	=	λ	?	a	A	В	С	D	Ε	F	G	Н	I	J	Κ	L	Μ	N	0
Code	-56	- 57	38	39	60	61	62	8	-64	65	66	67	68	8	70	71	\mathcal{D}	\mathcal{B}	- 74	75	- 76	η	78	79
Zeichen	Р	0	R	S	Т	U	V	W	Х	Y	Ζ	[λ	1	^		۰.	a	Ъ	c	d	e	f	g
Code	- 80	81	82	83	84	85	- 86	87	88	- 89	90	91	92	93	94	-95	96	- 97	- 98	99	100	101	102	103
Zeichen	h	i	i	k	1	Ħ	n	0	Ð	a	г	s	t	u	σ	W	x	Y	z	{	1	}	2	
Code	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127

Texteingabefel	lder																							
Zeile/Spatte		1	1	2	;	3		1	;	5	- (3		7	8	3		9	1	0	1	1	1	2
Fett1																								
Fett2																								
Spalte	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Normal3																								
Normal4																								
Normal5																								
Normal6																								
Code-Ergebnis	sfeld	er																						
Zeile/Spatte		1	1	2	:	3		1	;	5	- (3		7	8	3		9	1	0	1	1	1	2
Fett1																								
Fett2																								
Spalte	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
Normal3																								
Normal4																								
Normal5																								
Normal6																								
					-																			
Zeichen		ļ		Ħ	\$	%	£	ı	(1	•	+		-		/	0	1	2	3	4	5	6	7
Code	32	- 33	- 34	35	- 36	- 37	38	39	40	41	42	43	44	45	46	47	48	49	- 30	- 51	52	ß	- 54	- 55
Zeichen	8	9	:		<	=	×	?	a	А	В	С	D	Ε	F	G	Н	I	J	Κ	L	Μ	N	0
Code	- 56	- 57	38	39	60	61	62	63	64	65	66	67	68	69	70	71	72	\mathcal{B}	- 74	75	- 76	η	- 78	3
Zeichen	Р	0	R	S	Т	U	V	W	X	Y	Ζ	ſ	λ	1	<u>ہ</u>			a	Ъ	c	d	e	f	g
Code	- 80	81	82	83	- 84	85	86	87	88	- 89	-90	91	92	93	94	95	96	- 97	98	99	100	101	102	103
Zeichen	h	i	i	k	1	m	n	0	Ð	a	г	s	t	u	σ	w	х	Y	z	{	1	}	2	
Code	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127

WÖHLER

9. Logger/Datenübertragung

Bild 9.2

Der Menüpunkt **Log./IR** startet Unterprogramme, die die Langzeitdatenregistrierung (Loggen) und deren infrarotoptische Ausgabe bzw. Übertragung steuern.

9.1 Datenübertragung zum PC

Mit dem Menüpunkt Log./IR -> IrDA werden gespeicherte Messwerte und Protokolle zum PC übertragen.

Die Speicherinhalte des DC 2000^{PRO} werden infrarotoptisch über die IR-Schnittstelle (Best.-Nr. 9631 seriell oder 9318 USB oder Bluelink 500) zum PC übertragen.

Tabelle 4: Beispiel einer Empfangssequenz: Kanalnummer + Messwert

303025.01.0213:38:19	Start: Kanalnr. 3030 = Datum, Uhrzeit
3031 107.35	Kanalnr.3031+ Druckmesswert in mbar
3038 22.0	Kanalnr. 3038 + Temperatur extern in °C
3041 22.0	Kanalnr. 3041 + Temperatur intern in °C
3040 40	Kanalnr. 3040 + rel Feuchte in %
303025.01.0213:48:19	Stopp: Kanalnr. 3030 = Datum, Uhrzeit

Die Tabelle 4 zeigt einen Ausschnitt einer Übertragungssequenz, die mit dem Microsoft Hyperterminal-Programm über den IrDA-Empfänger an der seriellen Schnittstelle COM1 (9600, 8, 1,0,Xon/off) empfangen wurde. Im Anschluss an die Messwerte werden Daten des letzten Messprotokolls (Leckrate etc.)übertragen. Diese Text-Datei in Tabelle 4 kann dann in eine Exceldatei importiert und dort visualisiert werden.

Unter der Internetadresse <u>http://mgkg.woehler.de</u> kann ein Excelprogramm DC2000. exe als "Freeware" heruntergeladen werden, mit dem sich die Loggerdaten direkt in eine Excelliste einlesen bzw. Messprotokolle von Druckverlustmessungen mit einer zeitlichen Auflösung von 10 Sekunden grafisch darstellen lassen.

9.2 Loggen

Mit diesem Menüpunkt wird der Logger gestartet, womit bis zu **4680 Messungen** mit jeweils einem Druck-, Temperatur- und Feuchtemesswert (optional), d.h. maximal 18.720 Messwerte, abgespeichert werden können. Unterschreitet die Batteriespannung einen Schwellwert von 2 V (Batteriesymbol erscheint auf dem Display), so schaltet sich der Logger automatisch ab. Vor Start des Loggers für einen längeren Zeitraum sollte daher unter **Messart -> Batterien** der Batteriezustand geprüft werden. Messwerte werden auch ohne Batterien **mehr als 10 Jahre im Speicher** gehalten. Wird die schnellste Abtastung von 30 Sekunden gewählt, so kann damit maximal 1 Tag und 15 Stunden lang registriert werden (siehe Tabelle 5). Folgende Abtastintervalle sind möglich und können im Setupmenü unter **Setup -> Lograte** ausgewählt werden: 30 s, 1 Min, 3 Min, 10 Min, 30 Min, 1 h, 3 h, 4 h.

Lograte	max. mögliche Messdauer
30 s	39 h
1 Min	3,25 Tage
3 Min	9,75 Tage
10 Min	32,5 Tage
30 Min	13 Wochen
1 h	27 Wochen
3 h	19 Monate
4 h	ca. 2 Jahre (bei guten Trockenbatterien)

Tabelle 5: Loggerrate und max. Beobachtungsdauer bei 4680 Messungen

Wird während des Loggerbetriebs die "C I/O"-Taste gedrückt, so zeigt der DC 2000^{PRO} lediglich nach der Textausgabe "Log" den verbleibenden Speicherplatz und anschließend die aktuellen Messwerte. Der Cursor ist für andere Befehle blockiert. Der Loggerbetrieb wird **beendet**, indem man das Gerät über die CI/O-Taste (3 Sekunden) ausschaltet. Die Datenübertragung zum PC ist in Kapitel 9.1 erläutert.

9.3 Druckerausgabe von Messprotokollen

Log./IR -> DRUCKEN: Messprotokolle können direkt auf dem Thermodrucker (Best.-Nr. 4130) ausgedruckt werden. Sie bleiben auch nach dem Ausschalten des Gerätes solange erhalten, bis eine neue Druckverlustmessung oder Loggeraufzeichnung gestartet wird.

10. Batteriewechsel

Erscheint im Display nur noch der Lauftext "Selbsttest …" oder die Meldung "**Batterien wechseln**", so sind die Batterien vollkommen leer.

Zum Austausch der Batterien wird mit einem Schlitzschraubendreher die Geräterückseite entfernt, die Batterien werden ausgewechselt **(ACHTUNG, Polung beachten)** und das Gerät wird wieder geschlossen. Sind die Batterien innerhalb einer Minute gewechselt, braucht die Uhrzeit nicht korrigiert zu werden. Messdaten, Einstellungen und Kalibrierung bleiben auch ohne Batterien mindestens 10 Jahre erhalten.

Bild 10.1

11. Zubehör

- Batterie (Mignon 1,5 V)
- · Verbrennungsluftfühler, Steckerform
- · Verbrennungslufttemperatursonde, 280 mm
- · Verbrennungslufttemperatursonde, 100 mm
- · Magnethalter zur Sondenbefestigung
- Handschlaufe mit Karabinerhaken
- · Schutzhülle für Messgerät
- · USB IR-Schnittstelle für Ihren PC
- Wöhler Thermo-Schnelldrucker TD 600
- Thermopapier, 10 Rollen
- · Messschlauch einfach
- Messschlauch mit Messingkupplung DN10
- · Ersatzsensor Feuchte
- Medizinische Einmalspritze 100 ml
- · Rußtestpumpe
- Spritzenanschlussschlauch

Best.-Nr. 2999 Best.-Nr. 9605 Best.-Nr. 9611 Best.-Nr. 9651 Best.-Nr. 6142 Best.-Nr. 9805 Best.-Nr. 7202 Best.-Nr. 9318 Best.-Nr. 4130 Best.-Nr. 9145 Best.-Nr. 2338 Best.-Nr. 7209 Best.-Nr. 7203 Best.-Nr. 53196 Best.-Nr. 2412 Best.-Nr. 30545

12. Konformitätserklärung und DVGW-Baumusterprüfzertifikat

Hersteller: WÖHLER Messgeräte Kehrgeräte GmbH Schützenstr. 38, 33181 Bad Wünnenberg erklärt, dass das Produkt:

Produktname:	Druckcomputer
ModelInummer:	Wöhler DC 2000, ab Version 05
Geräteklasse:	D, gemäß VP 952 des DVGW

vom TÜV SÜD Industrie Service zur Gasleckmengenmessung entsprechend den DVGW-Anforderungen der VP 952 für Niederdruck-Gasleitungen nach DVGW-Arbeitsblättern G600 und G624 zertifiziert und zugelassen ist (DVGW-Baumusterprüfzertifikat DG-4805BQ0012).

Im Rahmen dieser Typprüfung wurde auch vom TÜV Süd Industrie Service die Einhaltung der folgenden Anforderungen zur Konformität und elektromagnetischen Verträglichkeit geprüft:

- Anforderungen an die elektromagnetische Verträglichkeit gemäß EN 61326-1: 1997+ A1: 1998+A2:2001
- Anforderungen gemäß DIN EN 61010-1:2002
- wesentliche Anforderungen an die Schutzart nach EN 60529:1991

Diese Erklärung wird für den o.g. Hersteller abgegeben durch:

Dr. Stephan Ester, Geschäftsführer Bad Wünnenberg, 19.10.04

Ablaufdatum / AZ date of expiry / file no. 21.01.2011 / 08-0074-GNV

26.02.2008 Rie A-1/2 Datum, Bearbeiter, Blatt, Leiter der Zertifizierungsst date, issued by, sheet, head of certification body

DVGW CERT GmbH - von der Deutschen Akkreditierungsstelle Technik (DATech) e.V. akkreditiert für die Konformitätsbewertung von Produkten der Gas- und Wasserversorgung

DVGW CERT GmbH - accredited by Deutsche Akkreditierungsstelle Technik (DATech) e.V. for conformity assessment of products of gas and water supply

DVGW CERT GmbH Josef-Wirmer-Straße 1-3 53123 Bonn

Telefon: +49 228 91 88-888 Telefax: +49 228 91 88-993 eMail: info@dvgw-cert.com

DAT-ZE-009/96-02

Hotline: 0 29 53 / 73 211 Fa

Fax: 0 29 53 / 73 250

30

13. Garantie und Service

13.1 Garantie

Jeder WÖHLER Druckcomputer DC 2000^{PRO} wird in allen Funktionen geprüft und verlässt unser Werk erst nach einer ausführlichen Qualitätskontrolle. Die Endkontrolle wird in einem Prüfbericht detailliert festgehalten und bei uns im Hause hinterlegt. Bei sachgemäßem Gebrauch beträgt die Garantiezeit auf das Gerät 12 Monate ab Verkaufsdatum. Ausgenommen von dieser Garantie sind neben Verschleißteilen (wie z.B. Batterien) Schäden am Drucksensor, die durch Überlastung verursacht werden. Die Kosten für den Transport und die Verpackung des Geräts im Reparaturfall werden von dieser Garantie nicht abgedeckt.

Diese Garantie erlischt, wenn Reparaturen und Abänderungen von dritter, nicht autorisierter Stelle an dem Gerät vorgenommen wurden.

Der SERVICE wird bei uns nicht nur in der Garantiezeit groß geschrieben. Wir sind selbstverständlich für Sie da:

- Sofortige Servicearbeiten erfolgen, wenn Sie mit dem Gerät zu uns nach Bad Wünnenberg kommen, unmittelbar im Haus.
- Sie schicken uns das Gerät zu, bekommen es innerhalb von durchschnittlich nur 5 Tagen repariert und anschließend durch unseren Paketdienst zurück.
- · Sofortige Hilfe erhalten Sie durch unsere Techniker am Telefon.

13.2 Kalibrierung

Obwohl das Gerät keine Verschleißteile enthält, empfehlen wir eine jährliche Überprüfung durch den Hersteller oder einer autorisierten Servicestelle.

13.3 Verkaufs- und Servicestellen

Deutschland:

Wöhler Messgeräte Kehrgeräte GmbH

Schützenstr. 41 33181 Bad Wünnenberg Tel.: +49 29 53 / 73 - 211 Fax: +49 29 53 / 73 - 250 e-mail: mgkg@woehler.de http://mgkg.woehler.de

Verkaufs- und Servicestelle Rhein/Ruhr Wöhler Messgeräte Kehrgeräte GmbH

Castroper Str. 105 44791 Bochum Tel.: +49 2 34 / 51 69 93 - 0 Fax: +49 2 34 / 51 69 93 - 99 e-mail: rheinruhr@woehler.de

Verkaufs- und Servicestelle Süd

Wöhler Messgeräte Kehrgeräte GmbH Gneisenaustr.12

80992 München Tel.: +49 89 / 15 89 223 - 0 Fax: +49 89 / 15 89 223 - 99 e-mail: sued@woehler.de

Niederbayern-Oberpfalz Reinhilde Ortner

St.-Erasmus-Str. 5 94469 Deggendorf/Deggenau Tel.: +49 9 91 / 3 70 85 - 0 Fax: +49 9 91 / 3 70 85 - 16

Berlin

Catrin Kortze Löwestr. 18 10249 Berlin Tel.: +49 30 / 42 65 102 - 720 Fax : +49 30 / 44 74 26 21

Audiovideum OHG Wiesenstraße 57-63

90443 Nürnberg Tel.: +49 911 / 45 99 99 Fax : +49 911 / 45 98 37 www.audiovideum.de

Service in den USA

32

Wohler USA Inc. 20 Locust Street, Suite 205 Danvers, MA 01923 United States of America www.wohlerusa.com

Im europäischen Ausland:

Czech Republic

Wöhler Bohemia s.r.o. Za Naspem 1993 393 01 Pelhrimov Tel.: +420 56 53 49 019 Fax: +420 56 53 23 078 e-mail: info@woehler.cz

Italien

Wöhler Italia srl Corso Libertà 93 39100 Bolzano Tel.: +39 0471 40 2422 Fax: +39 0471 40 6099 e-mail: gpu@woehler.it

Sweden

Svenska Mätapparater F.A.B. SWEMA, 123 56 Farsta Tel.: +46 8 - 94 00 90 Fax: +46 8 - 93 44 93

Norway

Varmeokonomi 3178 Vale Tel.: +47 33 06 -10 41 Fax: +47 33 06 - 01 62

Poland

Jeremias Spólka z o.o., 62-200 Gniezno Tel.: +48 614 - 28 46 20 Fax: +48 614 - 24 17 10

Croatia

STURM d.o.o. 51215 Kastav Tel.: +385 51 - 22 50 73 Fax: +385 51 - 22 46 31

Spain

Escal Calefaccion, S.L. 28033 Madrid Tel.: +34 91 - 76 33 660 Fax: +34 91 - 38 12 518

Great Britain

Wöhler UK Evesham, Worchester Tel.: +44 845 2600 366

Hungary

Lipták Fivérek, 5600 Békéscsaba Tel./Fax: +36 66 441 611

Finland

Avatermos OY 20700 Turku Tel.: +358 22 325 - 229 Fax: +358 22 325 - 279

Luxembourg

Ramirez-Electro S.A. 4384 Ehlerange Tel.: +352 26 55 451 Fax: +352 26 55 1245

Turkey

Bacamarket Ltd. Sti. 34425 Kozyatagi - Istanbul Tel.: +90 212 24 57 - 891 Fax: +90 212 24 57 - 894

Switzerland

Bösch Spezialbürsten 9443 Widnau Tel.: +41 71 722 - 18 59 Fax: +41 71 722 -18 52

Rocco Ditaranto Frauenfelderstr. 31 8555 Müllheim Tel.: +41 52741-4450 Fax: +41 52741-5660 email: info@ditaranto.ch

France

Self - Climat 77200 Torcy Tel.: +33 1 60 - 05 18 53 Fax: +33 1 60 - 17 58 39

OEG Nord Tel.: +33 14691152-7 Fax: +33 14691152-8 paris@oeg.net

Slowakia Republic

Kominsystem s.r.o. 91501 Nove Mesto nad Vahom Tel./Fax: +421 32 77 16 542

Netherlands

Imbema van Vugt B.V. 1221 JV Hilversum Tel.: +31 35 68 - 38 444, Fax: + 31 35 68 - 53 764

J. Feije

2071 VH Santpoort - N. Tel.: +31 23 - 53 81 803 Fax: +31 23 - 53 74 298

14. Kurzanleitung

Sehr geehrte Kundin, sehr geehrter Kunde,

die Kurzanleitung finden Sie als 4-fach Faltblatt in der Mitte dieser Bedienungsanleitung!

