

$$\frac{1}{2} + \frac{1}{\rho} + \frac{gn_1}{2} + \frac{1}{2} + \frac{1}{\rho} + \frac{gn_2}{\rho} + \frac{1}{\rho}$$
Field Dynamics, Herman *of Range Value (HT)*
which are *followed and leaders* of *Versional and Constants* of *Versional Application* (2.4 pm) (2007)

10. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN
MIT VERLUSTEN
Einführung
Das Druckverlustglied
$$\Delta p_V / \rho$$
 hat wie alle anderen Glieder
die Dimension des Quadrats einer Geschwindigkeit. Man
definiert deshalb für die in Einbauteilen einer Rohrleitung
entstehenden Druckverluste eine Druckverlustzahl ζ
durch den Ansatz

$$\frac{\Delta p_V}{\rho} = \sum_k \left(\zeta_k \cdot \frac{c_k^2}{2}\right) \qquad \text{Gl.(12.2)}$$

10. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN
MIT VERLUSTEN
Einführung
$$c_k \text{ ist gewöhnlich die über den Rohrquerschnitt gemittelteGeschwindigkeit
$$c_k = \frac{\dot{V}}{A_k}$$

hinter der Einbaustelle. Durch den Bezug auf eine mittlere
Geschwindigkeit wird die Rohrströmung zu einem
Stromfaden vereinfacht.$$

10. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN
MIT VERLUSTEN
Einführung
Für den Druckverlust infolge Wandreibung wählt man den
Ansatz mit der Rohrreibungszahl
$$\lambda$$

 $\frac{\Delta p_{\mathbf{v}}}{\rho} = \sum_{i} \left(\lambda_{i} \cdot \frac{L_{i}}{D_{i}} \cdot \frac{c_{i}^{2}}{2}\right)$ Gl.(12.3)
und berücksichtigt dabei, dass die der Strömung
ausgesetzte innere Rohroberfläche ~*L/D* ist. c_{i} ist wieder
die mittlere Geschwindigkeit im Rohrquerschnitt A_{i} . Für
die gesamten Verluste einer Rohrleitung kann man also
schreiben
 $\frac{\Delta p_{\mathbf{v}}}{\rho} = \sum_{i} \left(\lambda_{i} \cdot \frac{L_{i}}{D_{i}} \cdot \frac{c_{i}^{2}}{2}\right) + \sum_{k} \left(\zeta_{k} \cdot \frac{c_{k}^{2}}{2}\right) \text{Gl.(12.4)}$

10. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN
MIT VERLUSTEN
Rohrreibungsverluste
Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare
Rohrströmung die Rohrreibungszahl

$$\lambda = \frac{64}{Re} = 64 \cdot \left(\frac{v}{c_m}D\right) \qquad \text{Gl.(12.5)}$$
ist. Für die laminare Rohrströmung gilt ferner
(s. vorherige Folie): $\Delta p_V \sim Lc_m/D^2$.

10. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN
MIT VERLUSTEN
Rohrreibungsverluste
Die Kurven im Moody-Diagramm entsprechend den
folgenden Gleichungen:
Für den Bereich
$$\lambda = \lambda(\varepsilon/D)$$
 (hydraulisch rauhe Rohre)
gilt:
 $\lambda = \frac{1}{[1,14-2,0\cdot\log(\frac{\varepsilon}{D})]^2}$ Gl.(12.7)
Da in diesem Fall λ von c_m unabhängig ist, gilt hier
 $\Delta p_v \sim Lc_m^2$.

10. STRÔMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN
MIT VERLUSTEN
Rohrreibungsverluste
Für den gesamten turbulenten Bereich Re > 10⁴ ist die
Formel von Colebrook-White gültig:

$$\frac{1}{\sqrt{\lambda}} = -2 \cdot \log \left[\frac{2,51}{\text{Re }\sqrt{\lambda}} + 0,27 \frac{\varepsilon}{D} \right]$$
Sie geht für $\varepsilon/D \rightarrow 0$ in Gl. (12.6) und für Re $\rightarrow \infty$
in Gl. (12.7) über.
2010
Sie dentense förgeretende förgereten förgere

MIT VERLUSTEN Rohrreibungsverluste	
 Absolute Rauhigkeit <i>s</i> für Moody-D Glasrohre, gezogene Messing-, Kupfer- und Bleirohre handelsübliche Stahlrohre schmiedeeiserne Rohre Rohre aus Gusseisen mit Asphaltüberzug Eisenrohre mit galvanisiertem Überzug gusseiserne Rohre Holzrohre Betonrohre genietete Stahlrohre 	iagramm technisch glatt $\varepsilon = 0$ bis 1, $5\mu m$ $\varepsilon = 45\mu m$ $\varepsilon = 125\mu m$ $\varepsilon = 150\mu m$ $\varepsilon = 250\mu m$ $\varepsilon = 180$ bis $900\mu m$ $\varepsilon = 0, 3$ bis $3mm$ $\varepsilon = 0, 9$ bis $9mm$
chair of Flate Dynamics, rieman Protinger-InStitute (NPI)	Stuberlin de 12 April 2007 16

10. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN MIT VERLUSTEN Druckverluste durch Umlenkungen, Querschnittsänderungen und Einbauten	Ŋ
Zusatzverluste bei turbulenter Rohrströmung	
Bei turbulenter Rohrströmung treten außer durch	
Reibung an den Rohrwandungen weitere Druck-	
verluste an Stellen auf, an denen Rotations- und	
Schwankungsbewegungen erzeugt werden. Diese	
mit dem Ansatz (12.2) berücksichtigen wenn die Z	
Werte bekannt sind, die gewöhnlich auf die mittlere	
Geschwindigkeit hinter der Verlustquelle bezogen	
sind. Die Verlustzahlen ζ für einige Einbauten sind	
auf den Folien 39-49 angegeben. Zwei wichtige	
Verlustquellen sind Strömungsablösungen und	
Sekundärströmungen.	
tair of Fluid Dynamics, Hermann-Föttinger-Institute (HFI) . O. Paschereit Institute of Fluid Mechanics and Acoustics Oliver.paschereit@tu-berlin.de 12 April 2007	18

10. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN
MIT VERLUSTEN
durch Umlenkungen, Querschnittsänderungen und Einbauten
• Druckverluste durch Ablösung der Strömung
Ablösung einer Strömung von einer Wand kann
eintreten, wenn das Medium gegen steigenden Druck
strömt. Dabei muss (vgl. Kapitel 10.6) die Strömung
verzögert werden

$$c \frac{dc}{dx} = -\frac{1}{\rho} \frac{dp}{dx}.$$

10. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLETUNGEN
MIT VERLUSTEN
Druckverluste
durch Umlenkungen, Querschnittsänderungen und Einbauten
Die Verluste lassen sich hierbei ziemlich genau mit dem
Impulssatz berechnen. Es ergibt sich:

$$\mathcal{L} = \left(\frac{A_2}{A_1} - 1\right)^2$$
Dieser Borda-Carnotsche Stossverlust ist der einzige
einer Berechnung zugängliche Einzel-Druckverlust bei
turbulenter Rohrströmung.

10. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN
MIT VERLUSTEN Druckverluste
durch Umlenkungen, Querschnittsänderungen und Einbauten
In der Schnittebene A - B existiert nach der radialen
Druckgleichung (3.9), die hier sinngemäß lautet:

$$\frac{1}{\rho} \frac{dp}{dr} = \frac{c_m^2(r)}{r}$$
eine nach außen ansteigende Druckverteilung $p(r)$, die
von z unabhängig ist. $c_m(r)$ ist die über z gemittelte
Geschwindigkeitsverteilung.

10. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN
MIT VERLUSTEN
Druckverluste
durch Umlenkungen, *Querschnittsändenungen und Einbauten*
Infolge der Wandhaftung an der Ober und Unterseite des
Krümmers (
$$z = \pm h/2$$
) bildet sich jedoch ein Geschwindig-
keitsprofil $c = c$ (r, z) aus. Da der Druck und damit auch
der Druckgradient von z unabhängig ist, gilt
 $\frac{1}{\rho} \cdot \frac{dp}{dr} = \frac{c_m^2(r)}{r} = \frac{c^2(r, z)}{r_k} \implies r_k = r \left[\frac{c(r, z)}{c_m(r)}\right]^2$
Gl.(12.10)
wobei r_k der örtliche Krümmungsradius der Stromlinien
ist. In der Kanalmitte ($z = 0$) ist $c(r, 0) > c_m(r)$, in der Nähe
der Krümmerober- und -unterseite ($z = \pm h/2$) ist dagegen
 $c(r, z) < c_m(r)$.

10. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN
MIT VERLUSTEN
Rohrleitungsberechnung

$$p_1 - p_2 = \rho g \left(h_2 - h_1\right) + \frac{\dot{V}^2}{2} \rho \left[\frac{1}{A_2^2} - \frac{1}{A_1^2} + \sum_i \lambda_i \cdot \frac{L_i}{D_i A_i^2} + \sum_k \zeta_k \cdot \frac{1}{A_k^2}\right]$$
oder, wenn λ_i und ζ_i unabhängig von \dot{V} sind,
 $\Delta p = \rho g \left(h_2 - h_1\right) + const.\rho \dot{V}^2$

